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Ø Summary of activities;

Ø Integrated NFC modeling;

Ø Simulation (NFCSim);

Ø Optimization:

- Nuclear Fuel Cycle (FCOPT);

- General Energy (US-MARKAL);

Ø Neutronics:

- Modeling support (High Pu/MA-recycle LWRs);

- Neutronics-based proliferation metrics;

Ø Yucca Mountain Business Model (YMBM);

Ø CEA/USDOE (ANL, LANL) Collaboration.

Topical Outline
(    indicates charts to be presented; remainder is backup)
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“Top-Level” Summary of FY03 Activities

Ø Conduct CEA-LANL/ANL dynamic NFC model benchmarking and 
reference case studies (COSI-NFCSim):

- align processing, neutronics, costing, etc. databases;

- finalized NFC scenarios to be compared (France, US);

- investigate short- and long-term repository impacts (US), and
long-term Pu inventory management strategies (France, US);

Ø Apply NFCSim simulation model development, in parallel with 
optimization model (FCOPT) to specific NFC scenarios, as suggested by 
(equilibrium) DELTA model;

Ø Advance fidelity of Yucca Mountain Business Model and integrate
into optimization (FCOPT, MARKAL) and simulation (NFCSim)
models;

Ø Initiate development of NFC optimization model in a broader (US) 
energy context (MARKAL).
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Integrated NFC Modeling
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General Approach to Nuclear Fuel Cycle 
Analyses Used in AAA/AFCI Project: Specifics

Ø Scope scenario options/impacts using equilibrium (steady-state),
“top-level” (aggregated processes) DELTA model:

- Evaluate scenarios based on a range of performance 
indicators or metrics (e.g., cost, waste mitigation, proliferation 
risk, resource utilization);

- Build scenarios based on coupled technologies presented in  
multi-tiered [LWROT/LWRMX(N)/FSB] configurations;

Ø Based on equilibrium analyses yielded by the DELTA model, perform 
dynamic simulations and optimizations on limited number of scenarios:

- NFC Simulation Models: NFCSim (+ ORIGEN2.2);

- NFC Optimization Model: FCOPT;

Ø Examine ANFC implications in a total energy context: MARKAL;

Ø SOTA neutronics (burn-up, depletion, reactivity, etc.) analysis support 
are crucial at all levels of ANFC modeling: ORIGEN2.2, Monteburns, 
MCNPX.
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“Top-Level” Scenarios Suggested by CEA/DOE 
Collaboration for Time-Dependent Analyses

* Preferred on the basis of equilibrium 
economics, except for nsc = 2, where 
within uncertainties both are equivalent.
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ANFC Modeling Relationships, Scope, and Options 
and Approaches Being Pursued at Los Alamos
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An Integrated Approach to AFCI Modeling  as 
Pursued at Los Alamos
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Simulations (NFCSim)
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NFCSim Models the Flow of Nuclear 
Materials Through the Nuclear Fuel Cycle

Ø NFCSim tracks mass flow at the level of discrete reactor fuel 
charges/discharges for the US, logging in time the following:
– isotopic distribution;
– originating reactor;
– arrival, departures, and irradiation dates.

Ø Processes/facilities modeled include:
– mining & milling, 
– conversion,
– enrichment,
– fuel fabrication,
– reactor,
– onsite storage,
– interim storage,
– separations,
– transportation,
– repository.
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NFCSim Models the Flow of Nuclear Materials 
Through the Nuclear Fuel Cycle (cont.-1)

Ø Simulation is event driven:
– simulation proceeds sequentially from event to event; 
– event durations are input as integers with the specified units ranging 

from years to seconds (e.g., 18 months instead of 1.5 years) and 
translated internally into milliseconds.

Ø Simulation begins with present-day US fleet of commercial 
nuclear reactors (IAEA, EIA):
– PWRs;
– BWRs.

Ø Residence times of isotopes of interest are recorded for eventual 
use in proliferation-resistance model;

Ø Costs are tracked using a methodology similar to that used in the 
the DELTA(equilibrium) and FCOPT(optimization) models:
– system-wide Cost of Electricity;
– discounted Life-Cycle Cost (LCC),  a new feature.
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NFCSim Models the Flow of Nuclear Materials 
Through the Nuclear Fuel Cycle (cont.-2)

Ø Neutronics (burn-up, depletion, etc.) are provided by a directly 
coupled ORIGEN2.2 model that uses (recycle-dependent) cross 
sections updated by separate Monteburns computation. Allows 
analysis of:
– non-equilibrium nature of fuel cycle (i.e., beginning- and end-of-life 

transients);
– multiple recycles of Pu and/or MA;
– activity/radiotoxicity;
– heat load.
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Startup and Shutdown Transients are 
Modeled per Charge for Each Reactor

Charge

Charge
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Assumptions Used in NFCSim Example

Ø Simulation starts with the US commercial nuclear 
fleet;

Ø Reactor availability begins at 85%;
Ø Plant life is assumed to be 40 years, unless an 

extension has been granted, is being reviewed, or will 
be requested;

Ø Burn is 40 MWt d/kg for existing reactors and 55 MWt
d/kg for new reactors;

Ø SNF must be 7 years old before it can be moved from 
cooling storage.
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Assumptions Used in NFCSim Example (cont.-1)

Ø Projected Yucca Mountain schedule is used:
– A total of 4,300 shipments (i.e., a shipment is a discharge);
– Shipments begin in 1/4/2010;
– Shipments to Yucca Mountain occur over next 24 years;
– In full operation, 200 shipments per year are assumed;
– Assume shipping activity ramps up over 4 years:

• instantaneous number of shipments during ramp period;

• cumulative number of shipments during ramp period.
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Sample NFCSim Result: Nuclear 
Resurgence Scenario Based on ALWRs

Ø Existing fleet of 
nuclear reactors 
supplies electricity 
until end of third 
quarter, 2012, when 
demand starts 
increasing 1% per 
year.

Ø Repository opens 
January 4, 2010.
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Implementation Plan for Series-I Simulation

Ø Current LWR fleet runs to shutdown;
Ø ALWRs replace LWRs per onset of demand at t1;
Ø Repository opens at t2;
Ø Reprocessing starts at half capacity at t3;
Ø MOX fuel fabrication starts at half capacity at t4;
Ø Burn MOX in ALWRs:

– first-pass starts at t5;
– second-pass starts at t6;
– third-pass starts at t7;
– fourth-pass starts at t8.

Ø Staged increases in:
– burnup; 
– availability.

P

t

1st

2nd
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A Schematic Depicting Flow of Charges in 
NFCSim for Series 1
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Optimization:  Nuclear Fuel Cycle (FCOPT)
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Overall Mass Flows in NFC 
Optimization Model FCOPT
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Tier-0,1,2 Mass Flows in NFC 
Optimization Model FCOPT
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Example FCOPT Result: Time Evolution of 
Generation Mix and Material Flows and Inventories
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Example FCOPT Result: Time-dependent Generation 
Mix for a Range of HTGR Unit Total Costs, utc($/We)
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Example FCOPT Result: Dependence of Relative Cost, rcoe, and 
Proliferation Risk Index, rpri, on Reprocessing Unit Cost, ucrp($/kgSNF)
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Example FCOPT Result: Dependence of the Relative Cost and Relative Proliferation 

Risk, rcoe and rpri, on the Cost-Proliferation Coupling Coefficient, pro
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Optimization: General Energy (US-MARKAL)
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What MARKAL Does

Ø Identifies least-cost solutions for energy system planning.
Ø Evaluates options within the context of the entire 

energy/materials system by:
l balancing all supply/demand requirements;
l ensuring proper process/operation;
lmonitoring capital stock turnover;
l adhering to environmental & policy restrictions.

Ø Selects technologies based on life-cycle costs of competing 
alternatives;

Ø Establishes baselines and the implications of alternate 
futures;

Ø Provides estimates of:
l energy/material prices;
l demand activity;
l technology and fuel mixes;
l GHG and other emission levels;
l mitigation and control costs.
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MARKAL is Used in Over 50 Countries

q OECD Countries = 19
q Developing Countries = 20
q Other Countries = 11
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MARKAL Building Blocks
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Simplified Reference Energy System (RES)
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Energy Flows within MARKAL Showing Connectivity Between 
Sources {SRC}, Technologies {TCH}, and Demands {DMD}
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Connectivity Between Process {PRC}, Conversion {CON}, and 
Demand {DMD} Technologies {TCH} Modeled by MARKAL 
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Connectivity Between Energy Carriers {ENT} 
Modeled by MARKAL
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Nuclear Technologies and Materials Flows 
Implemented in (LA-)MARKAL Model
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MARKAL Model for Distributed Electricity Generation 
(DG) versus Central Electricity Generation (CG)
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Preliminary MARKAL Results: Typical Mix 
Between Central  and Distributed Generation
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Preliminary MARKAL Result: Typical 
Mix for Central Generation
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Preliminary MARKAL Results: Typical Mix 
Between Central  and Distributed Generation
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Neutronics - Modeling Support 
(High Pu/MA-recycle LWRs)
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Focus of High-Recycle LWR Neutronics Studies 
is Placed on MIX(a) rather than CORAIL(b)

Ø MIX versus CORAIL fuel assemblies:

- CORAIL:  MOX is in outer fuel rods only; UO2 is in inner fuel rods;

- MIX:  full cores of MOX fuel; MOX fuel is in all fuel rods; 
throughout each assembly; at least 12 fewer fuel rods per assembly 
(versus water holes) are required for safety;

Ø MIX configuration can transmute legacy Pu, whereas CORAIL primarily 
deals with intrinsically generated Pu;

Ø MIX concept can be implemented in a specified number of LWRs so that 
in the future (i.e., once legacy Pu is transmuted), all Pu generated from 
UO2–fueled reactors can be transmuted in the MIX-fueled reactors.

(a) H. Trellue, “Reduction of the Radiotoxicity of Spent Nuclear Fuel Using a Two-Tiered System Comprised of 
Light Water Reactors and Accelerator-Driven Systems “, dissertation  (to be published February, 2003);

(b) G. Youinou, M. Delpech, J. L. Guillet, A. Puill, and S. Aneil, “ Plutonium Management and Multi-Recycling 
in LWRs using an Enriched Uranium Support,”Global ’99, August 29 – September 3, 1999 (Jackson 
Hole, Wy); T. K. Kim, J. A. Stillman, and T. A. Taiwo, “Assessment of TRU Stabilization in PWRs,“
Argonne National Laboratory document ANL-AAA-020 (August 14, 2002).
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Neutronics Calculations for MIX Configuration

Ø Assume the use of full cores of MOX fuel;
Ø Only 10-20% of US LWRs fleet could transmute all US legacy Pu in ~50 years, as 

well as transmuting all Pu created by the remaining UO2-fueled reactors under 
steady-state operation;

Ø Pu content in heavy metal in MOX is held at ~8.3 w%, and U enrichment in MOX 
is increased as a function of recycle to assure that criticality is maintained;

Ø Core parameters modified to meet neutronic safety constraints:
– Twelve fuel rods replaced by water holes;
– Soluble boron enrichment in water increased to ~25% 10B;
– Control rods changed to B4C with up to 27.5% 10B enrichment;

Ø Addition of minor actinides to MOX increases proliferation protection, but:
– U enrichment was 2.7 w% for first pass, but had to be increased to 6.5 w/% 

for next passes:
– 33.3% 10B  enrichment in control rods is required, even with the addition of 

four extra control rods.
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Depletion of Plutonium in MIX Fuel 
Assemblies versus Number of Passes
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Ø Pu that is burned each cycle is replaced with “fresh” Pu from SNF to 
help criticality and maintain a mass balance per reactor (i.e., number of 
reactors required remains constant for each pass);
Ø Cooling time between cycles is 7 years (when activity and heat load of 
spent MOX fuel decreases to about that of extended burnup UO2 fuel 
after 3 years);

Ø Starting with 
depleted U, the 
enrichment remains 
below limit of 5 w%;
Ø Three passes can 
transmute >50% Pu;
ØAbout 1/3 of Pu 
transmuted is 
converted to minor 
actinides.
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Neutronics-Based Proliferation Metrics
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Four Proliferation-Relevant Attributes of Plutonium 
in a Multi-Recycling Nuclear Economy

In addition to the quantity of Pu, the quality or weapons 
attractiveness of this material to a nuclear-weapon
proliferant was examined.

Four proliferation-relevant attributes of the plutonium were 
quantified at three different junctures in the fuel cycle: 
Ø Fissile Content [%];
Ø Heat Generation Rate [W/kgPu];
Ø Bare-Sphere Critical Mass [kgPu];
Ø Spontaneous Neutron Source [(n/s)/kgPu].

Proliferation risk reduction with increasing number of passes 
through the reactor is incremental rather than dramatic.
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A Note on Proliferation Metrics Based on Pure Pu
versus Pu with Minor Actinides

Ø MA retention in MOX constitutes an additional hurdle for a 
proliferant, in that separated Pu is no longer directly available;  
Americium provides the bulk of the benefit (increased heat load);

Ø This barrier is porous, in that aqueous separation of 
plutonium is a mature, well-known technology.  It may not be 
prudent to assume that proliferants do not possess an 
indigenous capability to separate plutonium from other actinides;

Ø Therefore, regardless of the MA retention scenario, the 
evolution of the plutonium vector with recycle is of interest in 
assessing proliferation metrics;

Ø Small incremental improvements in the proliferation-relevant 
attributes of the plutonium vector as a function of recycle and MA 
retention scheme are seen;  the bulk of this improvement follows 
from Np retention (e.g., increase 238Pu breeding).
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Multi-Recycled Plutonium Gradually Becomes 
Less Attractive to a NW Proliferant
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Proliferation-Relevant Features of Pu
versus Composition of First-Pass MOX
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Proliferation Attributes of Plutonium in First-Pass 
MOX, Normalized to Reactor-Grade Pu (fresh SNF)
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Relative Multi-Criteria Proliferation Risk Index 

Measuring proliferation attractiveness in a way that recognizes 
undesirable characteristics of diverted Pu in a way that compounds 
the difficulty faced by a proliferant:
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An Alternate Metric: Weighted, Additive 
Barriers to Proliferation

Another proliferation risk index wherein barriers are viewed as additive, 
reflecting a scenario in which obstacles to plutonium use are overcome 
independently:

PRI = wsns*SNSR + whgr*HGRR + wbcm*BCMR.
The weights wi are chosen to sum to 1; for the case with equal barrier 
weighting (wi = 1/3):
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Yucca Mountain Business Model (YMBM)
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Ø Task: Evaluate effects of separations schemes on waste-carrying
capacity of Yucca Mountain; 

Ø Goal:  to preclude or delay need for second repository;
Ø Capacity evaluated on basis of thermal effects on repository caused 

by radioactive decay heat:
– Assume separated waste is vitrified before disposal (limited to 

25 weight% waste in glass);
– Repository temperature constraints include:

• Waste package (vitrified waste) temperature - prevent crystallization 
of glass;

• Tunnel wall temperature - prevent cracks that increase transport;
• Far-field temperature - protect performance of zeolite layer below 

planned repository;

Ø Determine a “capacity increase” factor for a given separation 
scheme that is (approximately) independent of whether high-heat 
loading or low-heat loading repository scheme is used.

Yucca Mountain Business Model (YMBM)
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Front-end Repository Impacts: Key Components of Spent 
Nuclear Fuel As Related to Repository Thermal Impacts
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VLHR = FP – VFP – HHR

LHR = VLHR + MA (possibly Pu)

SNF, VLHR, HHR, and LHR  represents 
notation taken from from: 
C. W. Forsberg, Nucl. Technol., 131(8), 252 (2000).

Notes:
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Front-end Scenarios Adopted for 
Investigating Repository Impacts

(a) Disposed material form.
(b) MA = minor actinides; TRU = MA + Pu; NVFP = all non-volatile fission products; VLHR = very low 
heat radio-nuclides; LHR = low heat radio-nuclides; U = uranium. Note that nsc = 3 and 4 result in 
two kinds of LHR waste products – with and without Pu; in a later paper (OECD, 2000) Forsberg
includes Pu in the LHR mix.
(c) Expressed relative to the indicated scenario (e.g., nsc = 2 = 1 – U indicates scenario 1 with 
uranium removed via UREX process, and the remainder put into vitrified glass, etc.)

Scenario,
nsc

Short 
Description(c)

Elaborated Description(a)

1 Base Case Direct disposal of SNF fuel assemblies

2 1 – U(ranium) Vitrified [MA + Pu + NVFP]

3 2 – {Cs,Sr} Vitrified [MA + Pu + VLHR = LHR](b)

4 3 - Pu Vitrified [1 - U - HHR - Pu = MA + VLHR = LHR](b)

5 2 - Pu Vitrified [1 - U - Pu = MA + NVFP](b)

6 4 - MA Vitrified [1 - U – HHR - Pu – MA = VLHR](b)

7 5 - MA Vitrified [1 - U - Pu - MA = NVFP](b)

Scenario,
nsc

Short 
Description(c)

Elaborated Description(a)

1 Base Case Direct disposal of SNF fuel assemblies

2 1 – U(ranium) Vitrified [MA + Pu + NVFP]

3 2 – {Cs,Sr} Vitrified [MA + Pu + VLHR = LHR](b)

4 3 - Pu Vitrified [1 - U - HHR - Pu = MA + VLHR = LHR](b)

5 2 - Pu Vitrified [1 - U - Pu = MA + NVFP](b)

6 4 - MA Vitrified [1 - U – HHR - Pu – MA = VLHR](b)

7 5 - MA Vitrified [1 - U - Pu - MA = NVFP](b)

Scenario,
nsc

Scenario,
nsc

Short 
Description(c)

Short 
Description(c)

Elaborated Description(a)Elaborated Description(a)

11 Base CaseBase Case Direct disposal of SNF fuel assembliesDirect disposal of SNF fuel assemblies

22 1 – U(ranium)1 – U(ranium) Vitrified [MA + Pu + NVFP]Vitrified [MA + Pu + NVFP]

33 2 – {Cs,Sr}2 – {Cs,Sr} Vitrified [MA + Pu + VLHR = LHR](b)Vitrified [MA + Pu + VLHR = LHR](b)

44 3 - Pu3 - Pu Vitrified [1 - U - HHR - Pu = MA + VLHR = LHR](b)Vitrified [1 - U - HHR - Pu = MA + VLHR = LHR](b)

55 2 - Pu2 - Pu Vitrified [1 - U - Pu = MA + NVFP](b)Vitrified [1 - U - Pu = MA + NVFP](b)

66 4 - MA4 - MA Vitrified [1 - U – HHR - Pu – MA = VLHR](b)Vitrified [1 - U – HHR - Pu – MA = VLHR](b)

77 5 - MA5 - MA Vitrified [1 - U - Pu - MA = NVFP](b)Vitrified [1 - U - Pu - MA = NVFP](b)

7

6
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“Tier-less” Front-end Scenarios for Investigating 
Repository Impacts

Scenario,
nsc

Elaborated Comparative Description 

1 Base- or Point-of-Departure (POD) case: Direct disposal of SNF fuel 
assemblies, including most VFPs.

2 Reduce mass and (hopefully) volume, but must deali with full short-
and long-term heat loads(b).

3 Reduce mass and (hopefully) volume, as well as short-term heat load 
associated with HHRs, but with full (TRU = Pu + MA) long-term heat load 
(and proliferation risk).

4 Similar to nsc = 3, with some reduction in long-term heat load 
through the removal of Pu (and reduced long-term proliferation risk).  

5 Not unlike nsc = 2, but with some reduction in long-term heat load 
resulting from Pu removal (and reduced long-term proliferation risk).

6 Reduce mass and (hopefully) volume with full short-term heat load, 
but with significantly reduced long-term heat load. 

7 The best it gets; volume and mass reduction along with 
reductions in both short-term and long-term heat loads.
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Sample Result from YMBM: Capacity Enhancement 

Ratios versus Scenarios and Limiting Constraints(a)

II III
IV

V
VI

VII

LL

STT

LTT

WPL

WFL

1

10

100

1000

Y
M

  C
A

P
A

C
IT

Y
 E

N
H

A
N

C
E

M
E

N
T

 R
A

T
IO

SCENARIO
LI

M
IT

S

LL = Least Limit; 

STT = Short-Term Thermal 
(near-field tunnel wall, 40 yr);

LTT=Long-Term Thermal (far-
field Zeolite, 300 yr);

WPL= Waste-Package Limit 
(center-line temperature); 

WFL = Waste-Fraction Limit 
(glass loading limit).
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Interim Results from YMBM 
Emplacement Studies

Ø Removing high heat-load species greatly increased 
repository capacity, limited by waste form (e.g., by waste 
content in vitrified waste) to ~ 9-fold increase;

Ø Removal of both short-lived (Cs, Sr, and their decay 
products) and long-lived (actinides) species is necessary to 
achieve significant repository capacity increases;  

Ø Increased repository capacity requires separate disposal 
(transmutation) of actinides (Pu, Am, Cm) plus alternate 
disposal (engineered storage or short-term repository) of 
short-lived species;

Ø Separate waste streams (short-lived fission products, hulls 
and clad, vitrified waste) are generated, but these added 
waste streams may be handled at reduced cost (to be 
evaluated later in FY 2003).
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Addition of  Disposal Costing Model Based Upon 
Repository Heat-Load Limitations (Interim)

Ø Unit repository disposal costs for spent fuel, less 
transportation-related charges, are currently estimated 
by OMB as ~$440/kgIHM;

Ø Question: How would disposal costs that include 
vitrification as well as emplacement compare if a 
reprocessing / HLW vitrification strategy were pursued?

Ø A preliminary methodology for evaluating these costs 
is proposed that uses guidelines(a) based on heat-release 
limitation .

(a) BATHKE, C.G. et. al., “Advanced Nuclear Fuel Cycle Systems Analyses for FY 2002,” Los 
Alamos National Laboratory document LA-UR-02-6674  (October 25, 2002).
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Repository Utilization as a Function of 
Waste Content and HLW Composition(a)

(a)For a standard burnup LWR with ~10-year cooling prior to 
reprocessing and disposal;  

(b)Direct disposal SNF is included for comparison.

6250.0990.0366LHRFPVI

90.30.7690.0407All FPVII

81.40.8930.0420MA, all FPV
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92.81.000.0516TRU, all FPII

N/A1.001.00All SNFI(b)

HLW packing 
density
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Interim Conclusion for Disposal Cost as a 
Function of Waste Content

Using heat load as the sole YM design criterion, the 
disposal cost may be formulated based on:

Ø HLW unit vitrification cost of 300,000 $/m3 (a); 

Ø HLW unit repository disposal cost of 332 $/kgSNF(eq.) of 
YM capacity used;

This condition represents the $440/kg LCC estimate minus 
the (avoided) YM cost component relating to spent fuel 
waste package fabrication.

(a) Hanford HLW vitrification program, “High-Level Waste Melter Study Report”, 
Pacific Northwest National Laboratory report PNNL-13582 (July, 2001).
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Disposal Cost Comparison Made Under 
YMBM “Rules” (e.g., partial costing)

846,400508974800.0366VI
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(a) DOE Office of Civilian Radioactive Waste Management design basis; “Analysis of the Total System Life 
Cycle Cost of the Civilian Radioactive Waste Management Program,”, US Department of Energy report 
DOE/RW-0533, (2001).



62

CEA/USDOE (ANL, LANL) Collaboration
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CEA/USDOE (ANL, LANL) Collaboration

Ø Conduct CEA-LANL/ANL dynamic NFC model 
benchmarking (COSI-NFCSim):

- align NFCSim and COSI neutronics, materials balance, 
costing, etc. processing capabilities;

- NFC benchmarking scenarios (open cycle, single Pu 
recycle in ALWRs commencing in 2015, Pu+Np

recycle) to be finalized by 02/07/2003, results available for
comparison as of 03/15/2003;

Ø CEA/DOE joint reference scenarios study, to commence 
thereafter:

- LWR + ALWR (beginning 2015) with Pu or TRU recycle;

- LWR + ALWR + FR with recycle (beginning 2030).
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Top-Level Summary of Parameters to be Determined and  
Agreed Between COSI and NFCSim Simulation Models

Ø Growth rate of nuclear-energy demand;

Ø Number of recycles (LWR, ALWR, FR);

ØWhat is recycled (carried over; LWR, ALWR, FR);

Ø FR conversion ratio;

Ø Reactor parameter matrices (efficiency, availability, 
burnup, etc.);

Ø Cost and financial parameters (unit costs, fixed and 
variable O&M, interest rates, tax structure, debt-to-equity); 

Ø Time database (cooling time, processing lags, 
transportation, construction, R&D/technology lags);

Ø Material loss fractions in fabrication, processing, etc.

Ø Separation and disposal (S&D) strategies.


